Please use this identifier to cite or link to this item: http://tainguyenso.dut.udn.vn/handle/DUT/573
DC FieldValueLanguage
dc.contributor.advisorNinh, Khánh Duy, TS
dc.contributor.authorNguyen, Thanh Long
dc.date.accessioned2024-11-05T08:45:04Z-
dc.date.available2024-11-05T08:45:04Z-
dc.date.issued2022
dc.identifier.urihttp://tainguyenso.dut.udn.vn/handle/DUT/573-
dc.descriptionDA.TI.22.437; 34 trvi
dc.description.abstractFace recognition has been a hot research topic in computer vision for many years. Recently, deep learning-based methods achieve excellent performance, even surpassing human in several scenarios by empowering the face recognition models with deep learning networks. Despite the remarkable success of general face recognition, how to minimize the effects of age variation is a challenge for current face recognition systems to correctly identify faces in many practical applications such as finding loss children. This project will introduce a unified, multi-task framework to jointly handle two tasks, termed MTLFace, which can learn age-invariant identity-related representation while achieving pleasing face synthesisvi
dc.language.isoenvi
dc.publisherTrường Đại học Bách khoa - Đại học Đà Nẵngvi
dc.subjectCông nghệ Phần mềmvi
dc.subjectFace Recognitionvi
dc.subjectDeep Learningvi
dc.titleSolving Age-Invariant Face Recognition and Face Age Synthesis simultaneously using Deep Learningvi
dc.typeĐồ ánvi
item.cerifentitytypePublications-
item.openairetypeĐồ án-
item.grantfulltextrestricted-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCó toàn văn-
item.languageiso639-1en-
Appears in Collections:DA.Công nghệ phần mềm
Files in This Item:
File Description SizeFormat Existing users please Login
4.DA.TI.22.437.NGUYENTHANHLONG.pdfThuyết minh2.11 MBAdobe PDF
    Request a copy
Show simple item record

CORE Recommender

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.